The search for dictionary key

Recently I helped to chase down a ghost (and you might be surprised to know that I, for most part, spend hours to be a ghostbuster, it could be fun, sometimes). A customer reported a weird issue when a visitor goes to their website, have every thing correct in the cart, including the discount, only to have the discount disappeared when they check out. That would be a fairly easy task to debug and fix if not for the problem is random in nature. It might happen once in a while, but on average, daily. It could not be reproduced locally, or reproduced consistently on production, so all fix is based on guess work.

After a lot of dry code reading and then log reading, it turned out that it seems the problem with missing discount was problem with the missing cache. Once in a while, the cache that contains the promotion list is returned empty, resulting that no discount is applied to the order.

But why?

After a few guesses, it eventually came to me that the problem is with the caching using Dictionary, more specifically, campaigns are loaded and cached using a Dictionary, using IMarket as a key. It would be fine and highly efficient and well, if not for the fact that the default implementation of IMarket is not suitable to be a Dictionary key. It does not implement IComparable<T> and IEquatable<T> which means, for the only case that two IMarket instances to be equal, is that they are the same instances. Otherwise even if their properties all equal in value, they will not be equal.

This is a short program that demonstrates the problem. You can expect it write “False” to the output console.

public class Program
{
    private static Dictionary<AClass, int> dict = new Dictionary<AClass, int>();
    public static void Main()
    {
        dict.Add(new AClass("abc", 1), 1);
        dict.Add(new AClass("xyz", 2), 2);

        Console.WriteLine(dict.ContainsKey(new AClass("abc", 1)));
    }
}


public class AClass
{
    public AClass(string a, int b)
    {
        AString = a;
        AnInt = b;
    }

    public string AString { get; set; }
    public int AnInt { get; set; }
}

The question arises is that if the key is not matched and an empty list of campaigns returns, why this only happens sometimes. The answer is the IMarket instances themselves are cached, by default in 5 minutes. So for the problem to occur, a cache for campaigns must be loaded in memory, just before the cache for IMarket instances to be expired (then new instances are created). Once the new IMarket instances are loaded, then the campaigns cache must be accessed again before itself expires (default to 30 seconds). The timing needs to be “right” which causes this problem elusive and hard to find from normal testing – both automated and manual.

Time to some blaming and finger pointing. When I fix something I usually try to check the history of the code to understand the reason behind the original idea and intention. Was there a reason or just an overlook. And most importantly

Who wrote such code?

Me, about 7 months ago.

Uh oh.

The fix was simple enough. Instead of IMarket, we can change the key to MarketId which implements both IEquatable<T> and IComparer<T>. So it does not matter if you have two different instances of MarketId, as long as they have the same value, they will be equal.

A workaround was sent to the customer to test and after a week or so they reported back the problem is gone. The official fix is in Commerce 14.31 which was released yesterday https://nuget.optimizely.com/package/?id=EPiServer.Commerce.Core&v=14.31.0 , so you’re, always, highly recommended to upgrade.

Lessons learned:

  • Pick the dictionary key carefully. It should implement IEquatable<T> and IComparable<T> , properly I might ask. In general, a struct is a better choice than a class, if you can.
  • No matter how “experienced” you think you are, you are still a human being and can make mistake. It’s important to have someone to check your work from time to time, spotting problems that you couldn’t.

Solving the mystery of high memory usage

Sometimes, my work is easy, the problem could be resolved with one look (when I’m lucky enough to look at where it needs to be looked, just like this one Varchar can be harmful to your performance – Quan Mai’s blog (vimvq1987.com) ). Sometimes, it is hard. Can’t count number of times that I stared blankly at the screen, and decided I’d better take a nap, roast a batch of coffee, or take a walk (that is lying, however, I don’t walk), because I’m out of idea and this is going nowhere. The life of a software diagnostic engineer is like that, sometimes you are solving the mystery of “what do I need to solve this mystery”. There are usually more dots scattered around in all places, your job is to figure out which dots make senses, which dots do not, and how to connect those that are relevant to solve the problem, and to tell a story.

The story today is about a customer complaining about their scheduled instance on DXP keeps having high memory after running Find indexing job. They have a custom job that was built to optimize performance for their language settings, but the idea is the same – load content, serialize it and send it to the server endpoint for indexing. It is, indeed a memory heavy job, especially when you have a lot of content that needs to be indexed (basically, number of content x number of languages x the complexity of the content). It is normal to have an increase in memory usage during such job – the application (or rather, the runtime, depending on which way you look at it) is doing it job – content needs to be loaded in memory, and if there is available memory it will be a huge waste if it is not used for something useful. And the application will not immediately release that memory, as the content is cached. The memory will only be reclaimed only if the cache expired, or the application has memory pressure (i.e. it asks the operating system for more memory and the OS refuses “there is nothing left”). Even if the cache is expired, the application will not always compact and release the memory back to the OS (LOH etc.)

Now what is problematic is that the customer application retains 25GB of memory for indefinitely. They waited for 24h but the memory usage is still high. The application appears to be fine, it does not crash because of memory issues (like Out of Memory), but it causes confusion s and worries to our customer. Game’s on.

One thing that does not make senses in this case is that even thought they have a custom index job, it is still a scheduled job. And for scheduled jobs, the contents are supposed to have a very short sliding expiration time (default to 1 minute). However, the cache entries in the memory dumps tell a different story. A majority of the cache entries have 12h sliding expiration time. Which does explain – in part at least – why the memory remains high. When you have a longer sliding time, chance is higher that the cache is hit at least once before it expires, which reset the expiration. If you have sufficient hit, the cache will effectively remain in memory forever, until you actively evict it (by editing the content for example)

0000753878028910                        0.77kb          0                           12:00:00                    2/16/2024 5:58:43 AM +00:00    EPPageData:601596:en__CatalogContent
0000753878029DC0                        0.78kb          0                           12:00:00                    2/16/2024 2:59:39 PM +00:00    EPPageData:1345603:es-pr__CatalogContent
00007538781C7F48                        0.78kb          0                           12:00:00                    2/16/2024 2:59:39 PM +00:00    EPPageData:1351986:es-pr__CatalogContent
00007538781C8058                        0.78kb          0                           12:00:00                    2/16/2024 2:59:39 PM +00:00    EPPageData:1346230:es-pr__CatalogContent
00007538781C8168                        0.78kb          0                           12:00:00                    2/16/2024 2:59:39 PM +00:00    EPPageData:1351988:es-pr__CatalogContent
00007538786FA8E8                        0.77kb          0                           12:00:00                    2/16/2024 8:14:53 AM +00:00    EPPageData:1049433:no__CatalogContent
00007538786FC598                        0.78kb          0                           12:00:00                    2/16/2024 9:32:28 AM +00:00    EPPageData:1088026:es-pr__CatalogContent
00007538786FD9E0                        0.77kb          0                           12:00:00                    2/16/2024 8:14:53 AM +00:00    EPPageData:1049435:no__CatalogContent
0000753878700770                        0.77kb          0                           12:00:00                    2/16/2024 7:52:53 AM +00:00    EPPageData:1029725:da__CatalogContent
0000753878706528                        0.78kb          0                           12:00:00                    2/16/2024 2:59:39 PM +00:00    EPPageData:1351990:es-pr__CatalogContent
0000753878706638                        0.78kb          0                           12:00:00                    2/16/2024 2:59:39 PM +00:00    EPPageData:1350104:es-pr__CatalogContent
00007538787A2F80                        0.77kb          0                           12:00:00                    2/16/2024 8:14:53 AM +00:00    EPPageData:1049439:no__CatalogContent
00007538787A3FD0                        0.77kb          0                           12:00:00                    2/16/2024 7:52:53 AM +00:00    EPPageData:1029729:da__CatalogContent
00007538787A6B48                        0.77kb          0                           12:00:00                    2/16/2024 7:52:53 AM +00:00    EPPageData:1029731:da__CatalogContent
00007538787A74C0                        0.77kb          0                           12:00:00                    2/16/2024 6:21:34 AM +00:00    EPPageData:690644:en__CatalogContent
00007538787A9CC8                        0.78kb          0                           12:00:00                    2/16/2024 5:43:57 AM +00:00    EPPageData:181410:cs-cz__CatalogContent
00007538787ACDD8                        0.82kb          0                           12:00:00                    2/16/2024 2:17:38 PM +00:00    EPPageData:1343746__CatalogContent
00007538787ACFF8                        0.83kb          0                           12:00:00                    2/16/2024 2:17:25 PM +00:00    EPPageData:1343746:en__CatalogContent
00007538787AE658                        0.77kb          0                           12:00:00                    2/16/2024 2:59:37 PM +00:00    EPPageData:1350160:da__CatalogContent
00007538787AE768                        0.77kb          0                           12:00:00                    2/16/2024 2:59:37 PM +00:00    EPPageData:1350162:da__CatalogContent
00007538787AEA98                        0.39kb          0                           00:00:00                    2/16/2024 2:17:38 PM +00:00    EPiAnc:ContentAssetAware1343745__CatalogContent
00007538787AF058                        0.77kb          0                           12:00:00                    2/16/2024 2:59:37 PM +00:00    EPPageData:1347560:da__CatalogContent
00007538787B29A0                        0.77kb          0                           12:00:00                    2/16/2024 2:17:07 PM +00:00    EPPageData:1329806:da__CatalogContent
00007538787B2E68                        0.77kb          0                           12:00:00                    2/16/2024 2:17:07 PM +00:00    EPPageData:1329808:da__CatalogContent
00007538787B31E8                        0.77kb          0                           12:00:00                    2/16/2024 2:17:07 PM +00:00    EPPageData:1329810:da__CatalogContent

It is not what it should be, however, as the default value for sliding expiration timeout of a content loaded by a scheduled job is 1 minute – i.e. it is considered to be load once and be done item. Was it set to 12h by mistake. Nope

Timeout is set to 600.000.000 ticks which is 60 second, which is the default value.

I have been pulling my hairs over this for quite a while. What if the cache entries were not added by the scheduled job, but by some other way not affected by the limitation of scheduled job? In short, we were deceived by customer’s statement regarding Find indexing job. It was merely a victim of same issue. It was resetting the last access to the cache entry but that’s about it.

Time to dig a bit more. While Windbg is extremely powerful, it does not let you know where is the code that load a specific content into cache (not unless you catch it red handed). So the only way to know is to look around and check if there are any suspicious call the IContentLoader.GetItems or IContentLoader.GetChildren . A colleague of mine worked with the customer to obtain their source code, and another deep dive.

Fortunately for us, the customer has a custom built Find indexer we helped to built in a previous problem, and that was shown in the search for GetItems. It struck me that it could be the culprit. The job itself is … fine, however it was given wrong data so it keeps loading content to index.

If my hypothesis is correct, then these things must be true:

  • The app’s memory usage will raise to 25GB regardless of the indexing job running or not. And it remains there without much fluctuation
  • There are a lot of row in tblFindIndexQueue

It turned out both of those were correct: there were more than 4 millions of rows in tblFindIndexQueue, and this is the memory consumption of the app over 24 hours

One we figured out the source of content loading, the fix was pretty straightforward. One thing we could do from our side is to shorten caching time of content loaded by the event-driven indexer. You should upgrade to Find 16.2.0 which contains the fix for FIND-12436 which is a nice improvement for memory usage.

Moral of story:

  • I’m a workaholic. I definitely should not work on weekends, but sometimes I need to because that’s when my mind is clearest
  • Keep looking. But as always, know when to give up and admit defeat
  • Take breaks. Long, shorts. Refresh your mind and look at different angles.
  • The sliding cache expiration time can be quite unexpected. if a content is already in cache with long sliding expiration, then a cache hit (via ISynchronizedObjectInstanceCache.ReadThrough to get that content with short sliding expiration will not change that value, only refresh the last access time, and vice versa)

Migrate Catalog content properties

A colleague asked me yesterday – how do we migrate properties of catalog content. There is, unfortunately, no official way to do it. There are several unofficial ways to do it, however. Today we will explore the way I personally recommend – for its safety and backward compatible.

Let’s say we have FashionProduct with a MSRP property with type of Money, now we would want to change it to Decimal . There are a some hacky ways to do this, but all of them require direct database manipulation which we should try to avoid – if possible.

First we will need this piece of code. it was “stolen” from a colleague of mine and has been used for countless times. You probably want to bookmark it as it’ll likely be useful in the future (I should probably do so myself as I have to find it every time I need). It is a snippet to traverse the catalog structure based on the content type you’d want.

public virtual IEnumerable<T> GetEntriesRecursive<T>(ContentReference parentLink, CultureInfo defaultCulture) where T : EntryContentBase
    {
        foreach (var nodeContent in LoadChildrenBatched<NodeContent>(parentLink, defaultCulture))
        {
            foreach (var entry in GetEntriesRecursive<T>(nodeContent.ContentLink, defaultCulture))
            {
                yield return entry;
            }
        }

        foreach (var entry in LoadChildrenBatched<T>(parentLink, defaultCulture))
        {
            yield return entry;
        }
    }

    private IEnumerable<T> LoadChildrenBatched<T>(ContentReference parentLink, CultureInfo defaultCulture) where T : IContent
    {
        var start = 0;

        while (true)
        {
            var batch = _contentLoader.GetChildren<T>(parentLink, defaultCulture, start, 50);
            if (!batch.Any())
            {
                yield break;
            }

            foreach (var content in batch)
            {
                // Don't include linked products to avoid including them multiple times when traversing the catalog
                if (!parentLink.CompareToIgnoreWorkID(content.ParentLink))
                {
                    continue;
                }

                yield return content;
            }
            start += 50;
        }
    }

To make sure we don’t load to many content at once, the batch is set size 50 but that is of course configurable (up to you)!

Now the fun part, where it actually does the work. Once we have the content, we will need to actually migrate the data, it is can be simple as this

private void MigrateProperty<T>(IEnumerable<T> contents) where T: EntryContentBase
{
      var batch = new List<T>();
      foreach(var content in contents)
      {
           var writeableClone = content.CreateWriteableClone<T>();
           Transform(writeableClone);
           batch.Add(writeableClone);
      }
      _contentRepository.Publish(batch, PublishAction.SyncDraft);
}

With the Transform method you can do whatever you want with the property value. As you might just want to rename it – it can do nothing except assign value to the new property. Or in the case we mentioned at the beginning, convert Money to Decimal is an easy task (Money is the less precision version of Decimal). Note that if you convert between data types, for example from double to int , there are potential data loss, but you are probably aware of that already.

The final step is to publish the change. For performance reasons, it is probably the best that you the Publish extension method of IContentRepository and save multiple content in one batch – may of of size 50 or 100. Those will skip things like creating new versions for optimal performance. You can read it about here New simple batch saving API for Commerce | Optimizely Developer C

The remaining question is where to put it. In a perfect world, I’d say in a migration step (i.e. a class that implement IMigrationStep ), so you ensure that your data will be properly migrated before anything else run, for example your new code that access the new property, or indexing of your content after migration. But if you have a sizeable catalog, this will take time and it might not be a good idea to let your users wait for it to complete. For that, it makes senses to do this in a schedule job and when it completes, you make a switch.

Migrating properties is not an easy or quick task, but it can be done with relative ease. It also reminds us about modeling – try to get it right from beginning so we don’t have to migrate. In the end, the fastest code is the code that does not need to be run!

Switching away from serializable cart mode

If you are using Optimizely Customized Commerce, the common wisdom is that you should be using serializable cart mode. It’s not perfect (we discussed the drawbacks in, um, my book), but generally it has performance benefits. But for any reason that you need to use the legacy cart mode, there is a switch you can use – IFeatureSwitch which can be used to change between those modes

It is important to remember that IFeatureSwitch only switch between to modes, it does not migrate any carts between those two. there is a one time cart migration job but that’s it.

To change the cart mode, it is simply as this

GetInstance<IFeatureSwitch>().DisableFeature(SerializedCarts.FeatureSerializedCarts);

However, there is a catch here.

To let IOrderRepository use the correct cart system, there is an ICartProvider which will be either CartProvider or SerializableCartProvider . The problem is that happens much earlier in the pipeline than IInitializationModule. In fact it is determined in IConfigurableModule.ConfigureContainer , which means before any IInitializationModule.Initialize. Even if we call DisableFeatures in another ConfigureContainer, there is no warranty that our code will be called before the framework code (the order of ConfigureContainer execution is indeterministic )

But fortunately, we can do that inside Startup.Configure. Due to how the feature switch data structure, it’s not as simple as adding a setting in appsettings.json, but it can be done easily in code:

            services.Configure<ApplicationOptions>(x =>
            {
                x.Features[SerializedCarts.FeatureSerializedCarts] = new ApplicationFeature
                {
                    Feature = "SerializedCarts",
                    State = FeatureState.Disabled,
                    Type = "Mediachase.Commerce.Core.Features.SerializedCarts, Mediachase.Commerce"
                };
            });

Of course, this is a workaround. The feature switch should be done as documented. It will be fixed in the future.

Command timeout for Commerce 14

While we always want to have fast database queries, it is not doable all the time. Sometimes we need to run slow queries, and we need to tell the underlying framework that this query can take some time to complete, and we’re fine with it. Otherwise, it will try to terminate the query after 30 seconds (the default time out limit)

There is a different between connection timeout and command timeout. Connection timeout is the time .NET will try to connect to the database before giving up. Command timeout is the time .NET will try to execute a command before giving up.

With Commerce 13, we have a setting added in 9.23.1, as we talked here Episerver Commerce commandTimeout configuration – Quan Mai’s blog (vimvq1987.com) , however, in Commerce 14, it’s … different.

Things are a bit complicated when it comes to command timeout with .NET 5 and up. With later versions of Microsoft.Data.SqlClient, it is possible to set command timeout directly using connection string. It is indeed a simple way to do it, but with a caveat.

The new setting is not recognized by Entity Framework/Entity Framework Core, and it will throw exception if you try to access a connection string with command timeout setting. It has another way to set the command timeout itself by each DbContext , but it does not accept the setting via Connection string. It will throw “Keyword not supported: ‘command timeout'” if such setting is present.

The workaround is to configure the command timeout for EcfSqlConnection connection string, and another different connection string without command timeout just for Entity Framework.

However, that’s with a caveat: using command timeout in connection string means that value applies to all database queries. As we discussed in the previous post above, doing so is not without drawbacks – it hides slow queries rather than let it fails. A failed query might not bring down your website, but an overloaded database will likely do.

In Commerce 14.15.6 which should be released shortly, we introduce a new setting SqlDataProviderOptions.CommandTimeout which let you set the command timeout for queries that are using SqlDataProvider – most notably the MetaDataPlus system like orders.

The important advantage of the new setting is that you can set it on the fly. If you know that some operation will be slow, you can set the command timeout to a higher value just for that operation, then set it back to default value. In most cases, you can leave it to default value (30 seconds), and do optimization on application level (reduce batch size for example) or database layer (rewrite the query, adding/optimizing indexes etc.). But sometimes you know the query would be slow and you acknowledge that – this is the tool.

Performance optimization – the hardcore series – part 3

“In 99% of the cases, premature optimization is the root of all devil”

This quote is usually said to be from Donald Knuth, usually regarded as “father of the analysis of algorithms”. His actual quote is a bit difference

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3%.

If you have read my posts, you know that I always ask for measuring your application before diving in optimization. But that’s not all of the story. Without profiling, your optimization effort might be futile. But there are things you can “optimize” right away without any profiling – because – they are easy to do, they make your code simpler, easier to follow, and you can be certain they are faster.

Let’s see if you can spot the potential problematic piece of code from this snippet

public Something GetData()
{
var market = list.FirstOrDefault(x => x.MarketId == GetCurrentMarket().MarketId)
{
//do some stuffs
}

}

If you are writing similar code, don’t be discouraged. It’s easy to overlook the problem – when you call FirstOrDefault, you actually iterate over the list until you find the first matching element. And for each and every of that, GetCurrentMarket() will be called.

Because we can’t be sure when we will find the matching element, it might be the first element, or the last, or it does not exist, or anywhere in between. The median is that GetCurrentMarket will be half called half the size of list

We don’t know if GetCurrentMarket is a very lightweight implementation, or list is a very small set, but we know that if this is in one very hot path, the cost can be (very) significant. These are the allocations made by said GetCurrentMarket

This is a custom implementation of IMarketService – the default implementation is much more lightweight and should not be of concern. Of course, fewer calls are always better – no matter how quick something is.

In this specific example, a simple call to get the current market and store it in a local variable to be used in the scope of the entire method should be enough. You don’t need profiling to make such “optimization” (and as we proved, profiling only confirm our suspect )

Moral of the story

  • For optimization, less is almost always, more
  • You definitely should profile before spending any considerable amount optimizing your code. But there are things that can be optimized automatically. Make them your habit.

Use Find for CSR UI

If you have been using Find, you might be surprised to find that CSR UI uses the SearchProvider internally. This is a bit unfortunate because you likely are using Find, and that creates unnecessary complexity. For starter, you need to configure a SearchProvider, then you need to index the entries, separately from the Find index. If you install EPiServer.CloudPlatform.Commerce, it will setup the DXPLucenceSearchProvider for you, which is basically a wrapper of LuceneSearchProvider to let it work on DXP (i.e. Azure storage). But even with that, you have to index your entries anyway. You can use FindSearchProvider, but that actually just creates another problem – it uses a different index compared to Find, so you double your index count, yet you have still make sure to index your content. Is there a better way – to use the existing Find indexed content?

Yes, there is

Searches for entries in CSR is done by IEntrySearchService which the default implementation uses the configured SearchProvider internally . Fortunately for us, as with most thing in Commerce, we can create our own implementation and inject it. Now that’s with a caveat – IEntrySearchService is marked as BETA remark, so prepare for some breaking changes without prior notice. However it has not changed much since its inception (funny thing, when I checked for its history, I was the one who created it 6 years ago, in 2017. Feeling old now), and if it is changed, it would be quite easy to adapt for such changes.

IEntrySearchService is a simple with just one method:


IEnumerable<int> Search(string keyword, MarketId marketId, Currency currency, string siteId);

It is a bit weird to return an IEnumerable<int> (what was I thinking ? ), but it was likely created as a scaffolding of SearchManager.Search which returns an IEnumerable<int>, and was not updated later. Anyway, an implementation using Find should look like this:

    public class FindEntrySearchService : IEntrySearchService
    {
        private EPiServer.Find.IClient _searchClient;

        public FindEntrySearchService(EPiServer.Find.IClient searchClient) => _searchClient = searchClient;

        public IEnumerable<int> Search(string keyword, MarketId marketId, Currency currency, string siteId)
        {
            return _searchClient.Search<EntryContentBase>()
                 .For(keyword)
                 .Filter(x => x.MatchMarketId(marketId))
                 .Filter(x => x.SiteId().Match(siteId))
                 .Filter(x => FilterPriceAvailableForCurrency<IPricing>(y => y.Prices(), currency))
                 .GetResult()
                 .Select(x => x.ContentLink.ID);
        }

        public FilterExpression<Price> FilterPriceAvailableForCurrency<T>(Expression<Func<T, IEnumerable<Price>>> prices, Currency currency)
        {
            var currencyCode = currency != null ? currency.CurrencyCode : string.Empty;

            return new NestedFilterExpression<T, Price>(prices, price => price.UnitPrice.Currency.CurrencyCode.Match(currencyCode), _searchClient.Conventions);
        }
    }

Note that I am not an expert on Find, especially on NestedFilterExpression, so my FilterPriceAvailableForCurrency might be wrong. Feel free to correct it, the code is not copyrighted and is provided as-is.

As always, you need to register this implementation for IEntrySearchService. You can add it anywhere you like as long as it’s after .AddCommerce.

_services.AddSingleton<IEntrySearchService, FindEntrySearchService>();

Optimizing an interesting query

It’s not a secret, I love optimizing things. In a sense, I am both an Optimizer (literally) and an optimizer. And today we will be back to basic – optimizing a tricky SQL query.

The query in question is this particular stored procedure ecf_CatalogNode_GetAllChildNodes, this is used to get all children nodes of specific nodes. It is used in between to find all entries that are direct, or indirect children of specific nodes. Why, you might ask, because when you change the url segment of the node, you want to make sure that all entries that are under that node, will have their indexed object refreshed.

Let’s take a look at this stored procedure, this is how it looks like

CREATE PROCEDURE [dbo].[ecf_CatalogNode_GetAllChildNodes]
    @catalogNodeIds udttCatalogNodeList readonly
AS
BEGIN
    WITH all_node_relations AS 
    (
        SELECT ParentNodeId, CatalogNodeId AS ChildNodeId FROM CatalogNode
        WHERE ParentNodeId > 0
        UNION
        SELECT ParentNodeId, ChildNodeId FROM CatalogNodeRelation
    ),
    hierarchy AS
    (
        SELECT 
            n.CatalogNodeId,
            '|' + CAST(n.CatalogNodeId AS nvarchar(4000)) + '|' AS CyclePrevention
        FROM @catalogNodeIds n
        UNION ALL
        SELECT
            children.ChildNodeId AS CatalogNodeId,
            parent.CyclePrevention + CAST(children.ChildNodeId AS nvarchar(4000)) + '|' AS CyclePrevention
        FROM hierarchy parent
        JOIN all_node_relations children ON parent.CatalogNodeId = children.ParentNodeId
        WHERE CHARINDEX('|' + CAST(children.ChildNodeId AS nvarchar(4000)) + '|', parent.CyclePrevention) = 0
    )
    SELECT CatalogNodeId FROM hierarchy
END

I previously wrote about the relations between entities in Commerce catalog, here Commerce relation(ship), a story – Quan Mai’s blog (vimvq1987.com) , so relations between nodes can be a bit complicated – a node can have one true parent defined in CatalogNode table, and then other “linked” nodes in CatalogNodeRelation . So to find all children – and grand children of a node, you need to get from both.

Getting children of a node from CatalogNode or CatalogNodeRelation is simple, but things become more complicated when you have to get grandchildren, then great-grandchildren, and so on, and so forth. with that, CTE needs to be used in a recursive way. But then there is a problem arises – there is a chance, small, but still, that the data was added in a correct way, so circular reference is possible. i.e. A is a parent of B, which is a parent of C, and itself is a parent of A. To stop the SP from running forever, a check needs to be added to make sure any circular reference is cut short.

This brings back memory as the first ever support case I worked on at Optimizely (then Episerver) was with a circular reference. The site would crash whenever someone visited the catalog management in Commerce Manager. That was around June, 2012 (feeling old now?). My “boss” at that time involuntarily volunteered me for the case. See what you made me do, boss.

Now you can grasp the basic of what the SP does – let’s get back to the original problem. it’s slow to run especially with big catalog and complex node structure. As always, to optimize everything you need to find the bottleneck – time to fire up SQL Server Management Studio and turn on the Actual Execution Plan

I decided to go with 66, the “root” catalog node. this query yield around 18k rows

declare @Nodes udttCatalogNodeList 

insert into @Nodes (CatalogNodeId) select 66

exec ecf_CatalogNode_GetAllChildNodes @Nodes

and also 18s of execution.

Mind you, this is on my machine with pretty powerful CPU (AMD Ryzen 7 5800x, 8 cores 16 threads), and a very fast nvme PCIe SSD (Western Digital Black SN850 2TB). If this was executed on Azure Sql database for example, a timeout is almost certainly guaranteed. So time of execution should only be compared relatively with each other.

If we look at the execution plan, it is quite obvious where the bottleneck is. A scan on CatalogNode table is heavy (it read 79M rows on that operation). As suggest by Anders from Timeout when deleting CatalogNodes from a large catalog (optimizely.com), adding a non clustered index on ParentNodeId column would improve it quite a lot. And indeed it does. The execution time is reduced to 5 second.

And the number of rows read on CatalogNode reduced to just 17k

This is of course a very nice improvement. But the customer reported that it is not enough and the SP is still giving timeout, i.e. further optimization is needed.

Naturally, the next step would be to see if we can skip the circular check. It was added as a safe measure to avoid bad data. It should not be there, as the check should be performed at data modification. But it is there for historical reasons and we can’t just change it, not trivially. So let’s try it for our curiousity.

The modified query looks like this (basically just commented out any code related to the CyclePrevention

ALTER PROCEDURE [dbo].[ecf_CatalogNode_GetAllChildNodes]
    @catalogNodeIds udttCatalogNodeList readonly
AS
BEGIN
    WITH all_node_relations AS 
    (
        SELECT ParentNodeId, CatalogNodeId AS ChildNodeId FROM CatalogNode
        WHERE ParentNodeId > 0
        UNION
        SELECT ParentNodeId, ChildNodeId FROM CatalogNodeRelation
    ),
    hierarchy AS
    (
        SELECT 
            n.CatalogNodeId
			--, '|' + CAST(n.CatalogNodeId AS nvarchar(4000)) + '|' AS CyclePrevention
        FROM @catalogNodeIds n
        UNION ALL
        SELECT
            children.ChildNodeId AS CatalogNodeId
			--, parent.CyclePrevention + CAST(children.ChildNodeId AS nvarchar(4000)) + '|' AS CyclePrevention
        FROM hierarchy parent
        JOIN all_node_relations children ON parent.CatalogNodeId = children.ParentNodeId
        --WHERE CHARINDEX('|' + CAST(children.ChildNodeId AS nvarchar(4000)) + '|', parent.CyclePrevention) = 0
    )
    SELECT CatalogNodeId FROM hierarchy
END

And the improvement is quite impressive (more than I expected), the query completes almost instantly (less than 1s). The read on CatalogNodeRelation significantly reduced

A word of warning here, execution plan can’t be simply compared as-is. If I run two versions side by side, it gives quite misleading comparison

Even though the top one (without the circular reference check) is much faster than the original (the bottom one), SQL Server estimates that the first is slower (almost 2x slower than the second). So execution plan should be used to see what has been done and what is likely the bottleneck inside a query, it should not be used as comparison between queries. In most cases, comparing statistics using set statistics io on is the best way to compare.

If not for the fact that we are changing the behavior of the stored procedure, I would be happy with this approach. The chance of running into circular reference is small, but it is not zero. As we said, we can in theory gating the relation during insert/updating, but that would be too big a change to start with. This is one of constraint as we work at framework level – we have to step carefully to not break anything. A breaking change is bad, but a data corruption is simply unacceptable. I spent a few hours (probably more than I should) trying to optimize the circular reference check, but no better solution is found.

The next approach would be – as we can guess, to make sure that we get rid of the Clustered Index Scan happened on the CatalogNodeRelation table. The solution would be quite simple, a non clustered index on the ParentNodeId should be enough.

Great success. The performance is comparable with the “non circular reference check” approach.

As adding an index is a non breaking change (and albeit in some cases it can cause performance regression, like in A curious case of SQL execution plan – Quan Mai’s blog (vimvq1987.com) , but it is rare, also, in this case the cardinality of the ParentNodeId is most likely quite well distributed).

That is all for today. Hopefully you learn one thing or two about optimizing queries in your daily works.

Skip validating carts

Carts are meant to be validated. Prices changed, customers add more quantity than allowed, promotions expired, stock ran out, etc.. All kinds of stuffs that make the items in carts need validation to make sure they up to date, and be ready to be converted to an order.

However, there are cases when you don’t want your carts to be validated. The most common case is of course, wish list – a special cart that allows customer to add items to, just to keep track of. You certainly don’t want to touch it. Another example is quote – when you give a specific item at specific price for a customer, and you don’t want it to be automatically changed to the public prices, which is different from that said price.

By default, when it is called to validate a cart, these things will be done:

  • Remove items that no longer available (either deleted or end of line)
  • Update prices of the items to the latest applicable prices, or remove items that have no prices.
  • Update quantity of the items (to comply with the settings or in stock quantity), or remove items that are out of stock
  • Apply promotions
  • Update quantity again (As promotions could do things like adding free items to the cart)

There are two ways you can avoid carts being validated, let’s see what we can do.

The “Wish list names” route

With OrderOptions you can set certain wishlist names to be exempted from the validation, using WishListCartNames. By default, it’s only “Wishlist”, but you can set several using the comma separator, like this

orderOptions.WishListCartNames = "Wishlist,Quote";

However there is a caveat, with this approach, carts in those names will not be shown in the Order Management (If you want, you can change that, however it is not an easy or quick one)

The OrderValidationService route

The validation of carts (or rather, order types in general) is done by OrderValidationService. And that class is meant to be extended if necessary. Here is how you would avoid validation carts with name “Quote”, using OrderValidationService

    public class CustomOrderValidationService : OrderValidationService
    {
        public CustomOrderValidationService(ILineItemValidator lineItemValidator, IPlacedPriceProcessor placedPriceProcessor, IPromotionEngine promotionEngine, IInventoryProcessor inventoryProcessor, OrderOptions orderOptions) : base(lineItemValidator, placedPriceProcessor, promotionEngine, inventoryProcessor, orderOptions)
        {
        }

        public override IDictionary<ILineItem, IList<ValidationIssue>> ValidateOrder(IOrderGroup orderGroup)
        {
            if (orderGroup.Name.Equals("Quote", System.StringComparison.OrdinalIgnoreCase))
            {
                return new Dictionary<ILineItem, IList<ValidationIssue>>();
            }
            return base.ValidateOrder(orderGroup);
        }
    }

And as OrderValidationService is registered by ServiceConfiguration attribute, you can register yours by

services.AddTransient<OrderValidationService, CustomOrderValidationService>();

One caveat though, making changes to OrderValidationService means those changes will apply to the entire website, so make sure the changes are actually the ones you want site-wide, not just in specific places.

Index only Catalog content

If you are using Find to index your content, you likely have used the Find Indexing job – which would index everything in one go. Today I stumped upon this question – A way to run indexing job for Commerce only | Optimizely Develope – and it is a good one – if you have many of content in CMS side, and they don’t change that often, if at all – you certain don’t want to waste time and resource in trying to reindex them again. Is there away to just index catalog content?

Yes, there is. It is a bit hacky solution, but it can certain work. But first, let’s dive in on how Find indexing job does it work. It relies on IIndexingJobService , which itself relies on ContentIndexer to do the job. In its turn, ContentIndexer uses a list of IReindexInformation to know which content to index, and in which languages. Here’s what it looks like

    public interface IReindexInformation
    {
        /// <summary>
        /// Content links to be reindexed.
        /// </summary>
        IEnumerable<ReindexTarget> ReindexTargets { get; }

        /// <summary>
        /// Gets the root to index.
        /// </summary>
        ContentReference Root { get; }
    }

It has one Root, and multiple ReindexTarget, which contains

    public class ReindexTarget
    {
        /// <summary>
        /// The content references.
        /// </summary>
        public IEnumerable<ContentReference> ContentLinks { get; set; }

        /// <summary>
        /// The languages the collection of <see cref="ContentReference"/> are enabled on.
        /// </summary>
        public IEnumerable<CultureInfo> Languages { get; set; }

        /// <summary>
        /// The site that the collection of <see cref="ContentReference"/> appears on
        /// or <c>null</c> if unknown.
        /// </summary>
        public SiteDefinition SiteDefinition { get; set; }
    }

As you might have guessed, Commerce has its own IReindexInformation to index catalog content. If we can only use that to run our job. This is how our “hack” begins

The interface IContentIndexer has no method to control the IReindexInformation`, but the default implementation ContentIndexer does. We set it to the only one we need, so here it is

        List<IReindexInformation> targets;
        var contentIndexer = _contentIndexer as ContentIndexer;
        if (contentIndexer != null)
        {
            targets = contentIndexer.ReindexInformation.ToList();
            var commerceReIndexInformation = targets.FirstOrDefault(x => x.GetType() == typeof(CommerceReIndexInformation));
            contentIndexer.ReindexInformation = new List<IReindexInformation>() { commerceReIndexInformation };
            _indexingJobService.Start(OnStatusChanged);

            contentIndexer.ReindexInformation = targets;
        }

A note is that you will still see the “Indexing Global assets and other data” message, because IIndexingJobService implementation will go through all SiteDefinition regardless and show that message, but the internal ContentIndexer will skip if the SiteDefinition passed to it does not match the SiteDefinition in the IReindexInformation (and for CommerceReIndexInformation it’s SiteDefinition.Empty

As I mentioned in the beginning, this is a bit hacky solution, as you have to cast IContentIndexer to its concrete implementation. The proper solution would be implement IContentIndexer yourself. Given that’s not a trivial job, I’ll leave at that.